Координация деятельности центральной нервной системы

          § 5. Координация деятельности центральной нервной системы

          Для деятельности центральной нервной системы характерна определенная упорядоченность и согласованность рефлекторных реакций, т. е. их координация. Взаимодействие двух нервных процессов–возбуждения и торможения, лежащих в основе всех сложных регуляторных функций организма, закономерности их одновременного протекания в различных нервный центрах, а также последовательная смена во времени определяют точность и своевременность ответных реакций организма на внешние и внутренние воздействия.

          Иррадиация и концентрация нервных процессов. Проведение афферентной волны по рефлекторной дуге вызывает в ее нервных центрах состояние возбуждения или торможения. Эти процессы при определенных условиях могут охватывать и другие рефлекторные центры. Распространение процесса возбуждения на другие нервные центры называют иррадиацией. Она осуществляется благодаря многочисленным взаимосвязям нейронов одной рефлекторной дуги с нейронами других рефлекторных дуг, так что при раздражении одного рецептора возбуждение в принципе может распространяться в центральной нервной системе в любом направлении и на любую нервную клетку.

          Чем сильнее афферентное раздражение и чем выше возбудимость окружающих нейронов, тем больше нейронов охватывает процесс иррадиации. Это явление можно наблюдать на спинальной лягушке. Слабое давление на пальцы задней лапки вызывает ответный рефлекс сгибания этой же лапки. Небольшое усиление давления приводит к сгибанию другой задней лапки, хотя рецепторы последней не раздражаются. Этот ответ возникает в результате того, что в сферу возбуждения помимо нервных центров одноименной половины спинного мозга вовлекаются центры другой его половины. При еще более сильном раздражении волна возбуждения охватывает вышележащие и нижележащие нервные центры и вызывает движения верхних конечностей (сначала на стороне тела, подвергшейся раздражению, а затем на противоположной).

          Аналогичное явление иррадиации возбуждения можно наблюдать при действии различных раздражении в коре больших полушарий.

          Иррадиация через некоторое время сменяется явлением концентрации процессов возбуждения в том же исходном пункте центральной нервной системы. Концентрация происходит в несколько раз медленнее, чем иррадиация нервных процессов.

          Процесс иррадиации играет положительную роль при формировании новых реакций организма (ориентировочных реакций, условных рефлексов). Активация большого количества различных нервных центров позволяет отобрать из их числа наиболее нужные для последующей деятельности, т. е. совершенствовать ответные действия организма. Благодаря иррадиации возбуждения между различными нервными центрами возникают новые функциональные связи – условные рефлексы. На этой основе возможно, например, формирование новых двигательных навыков.

          Вместе с тем иррадиация возбуждения может оказать и отрицательное воздействие на состояние и поведение организма. Так, иррадиация возбуждения в центральной нервной системе нарушает тонкие взаимоотношения, сложившиеся между процессами возбуждения и торможения в нервных центрах, и приводит к расстройству двигательной деятельности.

          Торможение в центральной нервной системе. Явление торможения в нервных центрах было впервые открыто И. М. Сеченовым в 1862 г. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга».

          Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга (например, накладывая кристаллик поваренной соли на область промежуточного мозга), И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивания лапки). Отсюда он сделал заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности вышележащие нервные центры могут тормозить деятельность нижележащих. Описанный опыт вошел в историю физиологии под названием «Сеченовского торможения».

          Тормозные процессы – необходимый компонент в координации нервной деятельности. Во-первых, процесс торможения ограничивает иррадиацию возбуждения, чем способствует его концентрации в необходимых участках нервной системы. Во-вторых, возникая в одних нервных центрах параллельно с возбуждением других нервных центров, процесс торможения тем самым выключает деятельность ненужных в данный момент органов, осуществляя координационную функцию. В-третьих, развитие торможения в нервных центрах предохраняет их от чрезмерного перенапряжения при работе, т. е. играет охранительную роль.

          По месту возникновения различают пресинаптическое торможение и постсинаптическое.

          Постсинаптическое торможение. Оно возникает в постсинаптической мембране нейрона в результате действия тормозного медиатора и связано с наличием в центральной нервной системе специальных тормозных нейронов. Это особый тип вставочных нейронов, у которых окончания аксонов выделяют тормозной медиатор. Природа тормозного медиатора в настоящее время точно не установлена. Нервные импульсы, подходя к тормозным нейронам, вызывают в них такой же процесс возбуждения, как и в Других нервных клетках. В ответ по аксону тормозной клетки распространяется обычный ПД, но в отличие от других нейронов окончания аксона при этом выделяют не возбуждающий, а тормозной медиатор. Под влиянием этого медиатора возникает кратковременная гиперполяризация постсинаптической мембраны следующего нейрона и регистрируется тормозной постсинаптический потенциал (ТПСП). В результате тормозные клетки не возбуждают, а тормозят те нейроны, на которых оканчиваются их аксоны. Такой вид торможения называют прямым, так как оно возникает сразу, без предварительного возбуждения.

          Специальные тормозные нейроны. – это клетки Рэншоу в спинном мозгу и корзинчатые клетки в промежуточном мозгу. Клеткам Рэншоу принадлежит важная роль в координации деятельности спинного мозга. Большое значение, например, эти клетки имеют при регуляции деятельности мышц-антагонистов. Они обеспечивают развитие торможения в мотонейронах мышц-антагонистов (рис. 52, В), что облегчает осуществление сокращения этих мышц. Клетки Рэншоу участвуют в регуляции уровня активности отдельных мотонейронов, ограничивая (тормозя) чрезмерное их возбуждение.

          Корзинчатые клетки играют важную роль в регуляции деятельности высших отделов мозга – промежуточного мозга и коры больших полушарий. Они являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий.

          Это обусловлено тем, что эти клетки вызывают синхронное торможение большого числа связанных с ними нейронов промежуточного мозга, регулируя тем самым прохождение восходящих импульсов через эти нейроны, время поступления их в кору больших полушарий и ритм корковой активности (см. рис. 52, Г).

          При возбуждении мотонейрона спинного мозга импульсы поступают по его аксону к мышечным волокнам и одновременно по коллатералям аксона – к тормозной клетке Рэншоу. Аксоны последней «возвращаются» к этому же мотонейрону, вызывая его торможение (см. рис. 52, Б). Следовательно, через клетку Рэншоу мотонейрон может сам себя затормаживать. Чем больше возбуждающих импульсов посылает мотонейрон на периферию (а значит, и к тормозной клетке), тем сильнее это возвратное торможение (разновидность постсинаптического торможения). Такая замкнутая система действует как механизм саморегуляции нейрона, ограничивая степень его возбуждения и предохраняя от чрезмерной активности.

          Пресинаптическое торможение. Оно возникает перед синоптическим контактом – в пресинаптической области. Окончания аксонов одной нервной клетки образуют аксоаксональный синапс на окончании аксона другой нервной клетки и блокируют передачу возбуждения в последнем (см. рис. 52, Л). В области такого пресинаптического контакта развивается чрезмерно сильная деполяризация мембраны аксона, которая приводит к состоянию парабиоза (пессимального торможения, по Н. Е. Введенскому). Заторможенный концевой участок аксона прекращает проведение нервных импульсов к синапсу и, значит, к следующей нервной клетке. Этот вид торможения обусловливает ограничение притока афферентных импульсов к нервным центрам.

          Доминанта. Активность нервных центров непостоянна, и преобладание активности одних из них над активностью других вызывает заметные перестройки в процессах координации рефлекторных реакций.

          Исследуя особенности межцентральных отношении, А. А. Ухтомский обнаружил, что если в организме животного осуществляется сложная рефлекторная реакция, например повторяющиеся акты глотания, то электрические раздражения моторных центров коры не только перестают вызывать в этот момент движения конечностей, но и усиливают и ускоряют протекание начавшейся цепной реакции глотания, оказавшейся главенствующей. Аналогичное явление наблюдалось при отравлении фенолом передних отделов спинного мозга лягушки. Повышение возбудимости мотонейронов приводило к тому, что отравленная лапка отвечала рефлексом потирания (отряхивания) не только на непосредственное раздражение ее кожи кислотой, но и на самые разнообразные посторонние раздражители:

          поднимание животного со стола в воздух, удар по столу, где оно сидит, прикосновение к передней лапке животного и др.

          Подобные эффекты, когда разнообразные поводы вызывают не адекватный им ответ, а реакцию, уже подготовленную в организме, постоянно встречаются и в поведении человека (смысл этого точно передают, например, такие пословицы, как «у кого что болит, тот о том и говорит», «голодной куме все пирог на уме»).

          В 1923 г. А. А. Ухтомский сформулировал принцип доминанты как рабочий принцип деятельности нервных центров.

          Термином доминанта был обозначен господствующий очаг возбуждения в центральной нервной системе, определяющий текущую деятельность организма.

          Основные черты, доминанты следующие: 1) повышенная возбудимость нервных центров, 2) стойкость возбуждения во времени, 3) способность к суммации посторонних раздражении и 4) инерция доминанты. Доминирующий (господствующий) очаг может возникнуть лишь при определенном функциональном состоянии нервных центров. Одним из условий его образования является повышенный уровень возбудимости нервных клеток, который обусловливается различными гуморальными и нервными влияниями (длительными афферентными импульсациями, гормональными перестройками в организме, воздействиями фармакологических веществ, сознательным управлением нервной деятельностью у человека и пр.).

          Установившаяся доминанта может быть длительным состоянием, которое определяет поведение организма на тот или иной срок. Способность стойко поддерживать возбуждение во времени – характерная черта доминанты. Однако далеко не всякий очаг возбуждения становится доминантным. Повышение возбудимости нервных клеток и их функционального значения определяется способностью суммировать возбуждение при поступлении любого случайного импульса.

          Восходящие нервные импульсы могут направляться не только по прямому специфическому пути – в соответствующие проекционные зоны мозга, но и через боковые ответвления – в любые зоны центральной нервной системы (см. § 6 этой главы). В связи с этим при наличии в каком-либо участке нервной системы очага с оптимальным уровнем возбудимости этот очаг приобретает возможность повышать свою возбудимость за счет суммирования не только собственных афферентных раздражении, но и посторонних, адресованных другим центрам. Не сила возбуждения, а способность накапливать и суммировать его превращает нервный центр в доминирующий. Явления суммации лучше всего выражены лишь при умеренном, оптимальном, повышении возбудимости нейронов. Это выражается в том, что доминанта легче всего подкрепляется слабыми раздражениями и гасится сильными.

          Чем больше нейронов вовлечено в данный очаг возбуждения, тем прочнее доминанта и тем больше она подавляет деятельность других отделов мозга, вызывая в них так называемое сопряженное торможение. Нервные клетки, входящие в доминирующий очаг, расположены не обязательно в одном участке нервной системы. Чаще всего они составляют определенную систему клеток (по А. А. Ухтомскому, «созвездие», или констелляцию, нейронов), расположенных в разных этажах головного и спинного мозга. Такими сложными являются, например, доминанты, обеспечивающие выполнение мышечной работы. Внешним их выражением могут быть стационарно поддерживаемые движение и рабочая поза, а также исключение в этот момент других движений и поз. В эти доминанты включаются клетки разнообразных областей коры больших полушарий и подкорковых отделов, связанных с организацией двигательной деятельности, а также клетки различных эмоциональных и вегетативных центров (дыхательного, сердечно-сосудистого, терморегуляционного и др.).

          Объединение большого числа нейронов в одну рабочую систему происходит путем взаимного сонастраивания на общий темп активности, т. е. путем усвоения ритма. Одни нервные клетки снижают свой более высокий темп деятельности, другие повышают низкий темп до какого-то среднего, оптимального, ритма. Доминирующая группа нервных центров, работающих в общем ритме, тормозит центры с иными ритмами активности. Значение явления усвоения ритма как механизма формирования доминирующего очага и механизма его функционального выделения из общей массы нервных клеток подтверждено в последнее время электрофизиологическими исследованиями на животных и человеке.

          Важным свойством доминанты является инерция. Однажды возникшая доминанта может длительное время поддерживаться и после удаления первоначального стимула, например при осуществлении цепных двигательных рефлексов. Инерция выражается также в том, что доминанта может надолго сохраняться как следовое состояние (потенциальная доминанта). При возобновлении прежнего состояния или прежней внешней ситуации доминанта может возникнуть снова. Такое воспроизведение доминанты происходит в организме спортсмена условнорефлекторно в предстартовом состоянии когда в известной мере активизируются все те нервные центры, которые входили в рабочую систему во время предыдущих тренировок. Это проявляется в усилении всего комплекса функций, связанных с мышечной работой: центральных, мышечных, выделительных, сосудистых и др. Мысленное выполнение физических упражнений также воспроизводит (актуализирует) доминирующую систему центров, что обеспечивает тренирующий эффект представления движений и является основой так называемой идеомоторной тренировки.

          В норме в нервной системе редко отсутствуют какие-либо доминанты. Бездоминантное состояние–это очень слабое возбуждение, разлитое более или менее равномерно по различным нервным центрам. Сходное состояние возникает у спортсменов в процессе полного расслабления, при аутогенной тренировке. Путем такого расслабления добиваются устранения мощных рабочих доминант и восстановления работоспособности нервных центров.

          Как фактор поведения доминанта связана с высшей нервной деятельностью, с психологией человека. Доминанта является физиологической основой акта внимания. Она определяет характер восприятия раздражении из внешней среды, делая его односторонним, но зато более целеустремленным. При наличии доминанты многие влияния внешней среды остаются вне внимания, но зато более интенсивно улавливаются и анализируются те, которые особенно интересуют человека. Доминанта – мощный фактор отбора биологически и социально наиболее значимых раздражении.

          Возникновение в коре больших полушарий доминантных состояний наблюдается в начале образования временных связей. Условный рефлекс образуется, когда доминантный очаг возбуждения начинает отвечать не на любое афферентное раздражение, а лишь на специфическое раздражение, ставшее сигнальным.

          Поскольку доминанта связана с определенной реакцией, она определяет одностороннее выражение поведения. Чем выраженное доминанта, тем больше она тормозит другие текущие рефлексы. Таким образом, из многих степеней свободы выбирается одна – при наличии в определенных двигательных центрах доминанты работает интенсивно лишь та часть мускулатуры, которая управляется этими центрами, а остальная выключена из сферы деятельности в результате сопряженного торможения. При этом заторможены также многие вегетативные центры. В начальный момент интенсивной мышечной работы почти полностью могут исчезать условные рефлексы: слюноотделительные, мигательные и др. Это обеспечивает Целесообразность движений и экономичность энерготрат. Мощная Двигательная доминанта при статических усилиях за счет сопряженного торможения приводит к задержке дыхания и угнетению деятельности сердечно-сосудистой системы.

          По мере формирования двигательного навыка система доминирующих нервных центров совершенствуется. Из нее исключаются все лишние нервные центры, остаются лишь те, которые необходимы и достаточны для осуществления двигательной задачи.

          § 5. Взаимодействие процессов возбуждения и торможения в центральной нервной системе.
          Важнейшей характеристикой деятельности нервных центров является постоянное взаимодействие процессов возбуждения и торможения как между разными центрами, так и в пределах каждого из них.

          Взаимосочетанная (реципрокная) иннервация мышц-антагонистов. Для сгибательного движения в суставе необходимо не только сокращение мышц-сгибателей, но и одновременное расслабление мышц– разгибателей. При этом в мотонейронах мышц-сгибателей возникает процесс возбуждения, а в мотонейронах мышц-разгибателей – процесс торможения. При возбуждении же центров разгибателей, наоборот, тормозятся центры сгибателей. Такие координационные взаимоотношения между моторными центрами спинного мозга были названы взаимосочетанной или реципрокной иннервацией мышц-антагонистов.

          Появление и усиление в нервных центрах процесса торможения при одновременном возбуждении других центров получило по аналогии с физическими процессами название индукции (в данном случае это одновременная индукция). В настоящее время выяснены механизмы проявления реципрокной иннервации. Афферентное раздражение (например, болевое раздражение рецепторов кожи) направляется не только по собственному рефлекторному пути к мотонейронам мышц-сгибателей, но и одновременно через коллатерали активирует тормозные клетки Рэншоу. Окончания этих клеток образуют тормозные синапсы на мотонейронах мышц-разгибателей, вызывая в них торможение.

          Реципрокные отношения между центрами мышц-антагонистов не являются постоянными и единственно возможными. В необходимых ситуациях (например, при фиксации суставов, при точностных движениях) они сменяются одновременным их возбуждением. В этом проявляется большая гибкость, целесообразность сложившихся в организме координации.

          Показано, что у человека во время ходьбы и бега основной формой координации являются реципрокные отношения, но помимо них имеются фазы одновременной активности мышц-антагонистов голеностопного и, особенно коленного и тазобедренного суставов. Длительность фаз одновременной активности увеличивается с повышением скорости перемещения.

          Взаимосочетанные (реципрокные) отношения характерны не только для моторных центров спинного мозга, но и для других центров. Еще в 1896 г. Н. Е. Введенский в опытах на животных наблюдал при раздражении двигательной зоны одного полушария коры головного мозга реципрокное торможение моторных центров другого полушария. При этом сокращение мышц одной половины тела сопровождалось расслаблением одноименных мышц другой.

          Реципрокные отношения формируются также при возникновении доминанты, когда при возбуждении одних центров с помощью сопряженного торможения выключается деятельность других, посторонних, нервных центров.

          Последовательная смена процессов возбуждения и торможения. Взаимоотношения процессов возбуждения и торможения в центральной нервной системе могут проявляться во времени в виде последовательной смены возбуждения и торможения в одних и тех же нервных центрах.

          «Возбуждение вслед за торможением» впервые наблюдал И. М. Сеченов. Он описал резкое усиление у лягушки рефлекторной деятельности после ее торможения сильным раздражителем: резкий прыжок с голосовой реакцией и восстановлением кожной чувствительности («рефлекс Сеченова»). Позднее было обнаружено «торможение вслед за возбуждением» (А. А. Ухтомский). После сильных ритмических раздражении лапки лягушки выключение раздражителя приводит к мгновенному расслаблению лапки–поднятая конечность падает, как плеть. Описанные взаимоотношения процессов возбуждения и торможения часто встречаются в коре больших полушарий при условнорефлекторной деятельности.

          Контрастное усиление одного процесса после другого в одном и том же нервном центре получило название последовательной индукции. Оно имеет большое значение при организации ритмической двигательной деятельности, обеспечивая попеременное сокращение и расслабление мышц.

          Принцип конвергенции. К одной и той же нервной клетке благодаря многочисленным побочным взаимосвязям рефлекторных дуг могут поступать импульсы от различных рецепторов тела, т. е. сигналы о самых разнообразных раздражениях. Схождение импульсов, поступивших по различным афферентным путям, в каком-либо одном центральном нейроне или нервном центре называется конвергенцией.

          В низших отделах нервной системы–спинном и продолговатом мозгу–конвергенция выражена гораздо меньше. Нейроны этих отделов получают информацию от рецепторов сравнительно небольших участков тела – рецептивных полей одного и того же рефлекса. В надсегментарных отделах, особенно в коре больших полушарий, происходит конвергенция импульсов различного происхождения от разных рефлекторных путей. Нейроны надсегментарных отделов могут получать сигналы о световых, звуковых, проприоцептивных и прочих раздражениях, т. е. сигналы разной модальности. На теле нейронов постоянно изменяются «конвергентные узоры» – возбужденные и заторможенные участки. Подсчитано, что размеры рецептивных полей корковых нейронов, т. е. участков тела, от которых к ним могут поступать афферентные раздражения, в 16– 100 раз больше, чем размеры тех же полей для афферентных клеток спинальных рефлекторных дуг. Благодаря такому разнообразию поступающей информации в нейронах вышележащих отделов головного мозга может происходить ее широкое взаимодействие, сопоставление, отбор, выработка адекватных реакций и установление новых связей между рефлексами.

          Принцип общего конечного пути. Афферентных нейронов в центральной нервной системе в несколько раз больше, чем эфферентных. В связи с этим многие афферентные влияния поступают к одним и тем же вставочным и эфферентным нейронам, которые являются для них общими конечными путями к рабочим органам. Система реагирующих нейронов образует таким образом как бы воронку («воронка Шеррингтона»). Множество разнообразных раздражении может возбудить одни и те же мотонейроны спинного мозга и вызвать одну и ту же двигательную реакцию (например, сокращение мышц-сгибателей верхней конечности). Английский физиолог Ч. Шеррингтон, установивший принцип общего конечного пути, предложил различать союзные (аллиированные) и антагонистические рефлексы. Встречаясь на общих конечных путях, союзные рефлексы взаимно усиливают друг друга, а антагонистические–тормозят. В первом случае в нейронах общего конечного пути имеет место пространственная суммация (например, сгибательный рефлекс усиливается при одновременном раздражении нескольких участков кожи). Во втором случае происходит борьба конкурирующих влияний за обладание общим конечным путем, в результате чего один рефлекс осуществляется, а другие затормаживаются. При этом освоенные движения выполняются с меньшим трудом, так как в их основе лежат упорядоченные во времени синхронизированные потоки импульсов, которые проходят через конечные пути легче, чем импульсы, поступающие в случайном порядке.

          Преобладание на конечных путях той или иной рефлекторной реакции обусловлено ее значением для жизнедеятельности организма в данный момент.

          В таком отборе важную роль играет наличие в центральной нервной системе доминанты. Она обеспечивает протекание главной реакции. Например, ритмический шагательный рефлекс и одиночный, непрерывный рефлекс сгибания при болевом раздражении являются антагонистическими. Однако спортсмен, внезапно получивший травму, может продолжать бег к финишу, т. е. осуществлять ритмический рефлекс и подавлять болевые раздражения, которые, поступая к мотонейронам сгибательных мышц, препятствуют попеременному сгибанию и разгибанию ноги.

          § 6. Специфические и неспецифические системы
          В нервной системе в настоящее время различают два отдела – специфическую и неспецифическую системы. Специфическая система расположена в наружных и боковых частях центральной нервной системы, а неспецифическая занимает срединную ее часть (рис. 53). Эти системы различаются по строению и функциональным особенностям.

          К специфической системе относятся все пути и нервные центры. проводящие афферентную импульсацию от различных рецепторов тела и эфферентную импульсацию к рабочим органам. Это пути сенсорных систем и нисходящие пути.

          Афферентные пути этой системы проводят сигналы какой-либо специфической чувствительности (например, мышечно-суставной, тактильной, слуховой, зрительной и других) от рецепторов, воспринимающих раздражения определенного качества, к соответствующим нервным центрам, где происходит анализ этих сигналов и возникают ощущения и восприятия.

          Эфферентные импульсы от нервных центров к исполнительным органам тела – мышцам и железам–направляются по специфическим нисходящим путям, образующим проводящие пути, или тракты (например, пирамидный тракт), и служат для управления определенными функциями на периферии (например, движениями скелетных мышц, изменением просвета сосудов и т. д.). Это эфферентные отделы, обеспечивающие различные рефлекторные реакции, описание которых дано в соответствующих разделах учебника. Следовательно, деятельность специфической системы связана с анализом различных раздражителей и определенным характером ответных реакций организма. В этой деятельности активное участие принимает также неспецифическая система организма, регулирующая и изменяющая как восприятие организмом специфических раздражении, так и его эфферентную деятельность.

          Неспецифическая система не связана с анализом какой-либо специфической чувствительности или с выполнением определенных рефлекторных реакций. Импульсация в эту систему поступает через боковые ответвления от специфических путей, передающих проприоцептивные, слуховые и другие специфические сигналы. К одному и тому же нейрону могут приходить импульсы различного происхождения и от разных рецепторов тела. В результате такого схождения (конвергенции) импульсов создаются широкие возможности для их взаимодействия. Вследствие этого неспецифическая система играет большую роль а процессах интеграции функций в организме.

          Характерной особенностью нейронов неспецифической системы являются также обилие и разнообразие их отростков. Они обеспечивают широкую циркуляцию импульсов в неспецифической системе. Благодаря этому здесь возможно взаимодействие одной клетки почти с 30000 других нейронов. По характеру расположения нейронов и обилию их связей неспецифические отделы ствола головного мозга получили название сетевидного образования (или ретикулярной формации).

          Функции ретикулярной формации. Различают два основных типа влияния неспецифической системы на работу других нервных центров – активирующее и тормозящее влияния. Оба они могут адресоваться как вышележащим центрам (восходящие влияния), так и нижележащим (нисходящие влияния).

          Восходящие влияния. В опытах на животных было показано, что из сетевидного образования среднего мозга исходит мощное активирующее влияние на кору больших полушарий. Электрические раздражения этих отделов неспецифической системы через вживленные электроды вызывали пробуждение спящего животного. У бодрствующего животного подобное раздражение повышало уровень корковой активности, усиливало внимание к внешним сигналам и улучшало их восприятие. Эти опыты свидетельствуют о большом значении импульсов среднемозговых отделов неспецифической системы в повышении функционального состояния нейронов коры больших полушарий. Восходящие влияния из этих областей охватывают диффузно всю кору, вызывая общее изменение ее функционального состояния. Они особенно усиливаются при действии новых раздражений, заранее подготавливая организм к реакции на неожиданную ситуацию. Это всегда имеет место при ориентировочных реакциях и в начальных стадиях выработки условного рефлекса. В результате активирующих воздействий во всех областях коры больших полушарий повышается возбудимость и лабильность корковых нейронов, быстрее возникают ответы на внешние раздражения и легче происходит вовлечение новых нервных клеток в протекающую реакцию. Увеличение числа активированных нейронов позволяет в процессе обучения, тренировки «выбрать» из них клетки, наиболее важные для осуществления ответных действий организма.

          Активирующие влияния, исходящие из промежуточного мозга (от неспецифических ядер таламуса), в отличие от среднемозговых, воздействуют лишь на ограниченные области коры. Считают, что такое избирательное повышение активности небольшой территории коры имеет значение в организации внимания, выделяя на общем фоне работу небольшого числа корковых клеток. Обычно активируются нейроны именно тех отделов коры, которые заняты в данный момент наиболее важной для организма деятельностью. Это в значительной мере способствует протеканию специфических функций мозга – восприятию и переработке наиболее нужных сигналов, осуществлению первоочередных двигательных актов.

          Неспецифическая система способна оказывать на кору помимо активирующих и тормозящие влияния. Эти влияния различны по характеру: локальные–из области промежуточного мозга и общие (диффузные) – из задних отделов мозга. Первые участвуют в создании «рабочей мозаики» в коре, разделяя ее на более активные ч менее активные участки. Вторые обусловливают диффузное угнетение корковых функций. Широко распространенное по всей коре торможение деятельности корковых нейронов возникает с участием заднестволовых отделов ретикулярной формации – неспецифических нейронов задних частей среднего и продолговатого мозга. Оно имеет место в случае длительной и монотонной работы (например, производственных условиях при работе на конвейере или в спорте при прохождении длинных и сверхдлинных дистанций).

          В электрических проявлениях деятельности мозга активирующие влияния проявляются в виде возникновения частой асинхронной активности (десинхронизация), а тормозящие влияния – в виде медленных ритмичных колебаний (синхронизация).

          Нисходящие влияния. Все отделы неспецифической системы оказывают помимо восходящих значительные нисходящие влияния. Отделы ствола мозга регулируют (активируют или угнетают) активность нейронов спинного мозга и проприорецепторов мышц (мышечных веретен). Эти влияния совместно с воздействиями из экстрапирамидной системы и мозжечка играют большую роль в регуляции тонуса мышц и обеспечении позы человека. Непосредственные команды к осуществлению движений и влияния, формирующие перестройки тонуса мышц, передаются по специфическим путям. Однако неспецифические влияния позволяют существенно изменить протекание этих реакций. При усилении активирующих воздействий из ретикулярной формации среднего мозга на нейроны спинного мозга увеличивается амплитуда производимых движений и повышается тонус скелетных мышц. Включение этих влияний при некоторых эмоциональных состояниях помогает повысить эффективность двигательной деятельности человека и выполнить значительно большую работу, чем в обычных условиях.

          Таким образом, в формировании целостных актов организма участвуют обе системы головного мозга–специфическая и неспецифическая. Проведение и обработку специфической информации, а также управление ответными реакциями осуществляет специфическая система. На эти процессы значительно влияет неспецифическая система. В свою очередь, деятельность этого неспецифического отдела контролируется специфическими системами мозга. В объединении функций обеих систем и общем контроле за их активностью ведущая роль принадлежит коре больших полушарий.

          § 7. Основные рефлекторные центры нервной системы
          Спинной мозг. Спинной мозг является низшим и наиболее древним отделом центральной нервной системы. Он имеет значительно меньшую самостоятельность у человека по сравнению с животными. У человека его вес по отношению к головному мозгу составляет всего 2% (у кошек–25%, у кролика–45%, у черепах– 120%).

          Надежность сегментарных функций спинного мозга обеспечена множественностью его связей с периферией: каждый сегмент спинного мозга иннервирует 3 метамера (участка) тела – собственный, половину вышележащего и половину нижележащего, а каждый метамер тела получает иннервацию от 3 сегментов спинного мозга. Такое устройство гарантирует осуществление функций спинного мозга при возможных его перерывах и других поражениях.

          Распределение функций входящих и выходящих волокон спинного мозга подчиняется определенному закону: все чувствительные (афферентные) волокна входят в спинной мозг через его задние корешки, а двигательные и вегетативные (эфферентные) выходят через передние корешки. В задних корешках волокон гораздо больше, чем в передних (их соотношение у человека примерно 5:1) т. е. при большом разнообразии поступающей информации организм использует незначительное количество исполнительных приборов Основную часть волокон в спинномозговых корешках составляют мякотные волокна. По задним корешкам в спинной мозг поступают импульсы от рецепторов скелетных мышц, сухожилий, кожи, сосудов, внутренних органов. Передние корешки содержат волокна к скелетным мышцам и вегетативным ганглиям.

          Задние корешки образованы волокнами одного из отростков афферентных нейронов, тела которых расположены вне центральной нервной системы – в межпозвоночных ганглиях, а волокна другого отростка связаны с рецептором. Общее число афферентных волокон у человека достигает примерно 1 млн. Они различаются по диаметру. Наиболее толстые идут от рецепторов мышц и сухожилий, средние по толщине–от тактильных рецепторов кожи, от части мышечных рецепторов и от рецепторов внутренних органов (мочевого пузыря, желудка, кишечника и др.), наиболее тонкие миелинизированные и немиелинизированные волокна–от болевых рецепторов и терморецепторов. Одна часть афферентных волокон заканчивается на нейронах спинного мозга, другая часть направляется к нейронам продолговатого мозга, образуя спинно-бульбарный путь.

          Передние корешки состоят из отростков мотонейронов передних рогов спинного мозга и нейронов боковых рогов. Волокна первых направляются к скелетной мускулатуре, а волокна вторых переключаются в вегетативных ганглиях на другие нейроны и иннервируют внутренние органы.

          В составе серого вещества спинного мозга человека насчитывают около 13,5 млн. нервных клеток. Из них двигательные клетки – мотонейроны – составляют всего 3%, а 97% представляют промежуточные клетки (вставочные, или интернейроны). Среди мотонейронов спинного мозга различают крупные клетки – альфа-мотонейроны и мелкие клетки – гамма-мотонейроны. От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие сокращение скелетных мышечных волокон. Тонкие волокна гамма-мотонейронов не вызывают сокращения мышц. Они подходят к проприорецепторам – мышечным веретенам и вызывают сокращение их внутренних (интрафузальных) мышечных волокон. При этом сокращении растягиваются рецепторы веретен, повышается их чувствительность, усиливается поток афферентных импульсов от скелетных мышц к нервным центрам. Таким образом, альфа-мотонейроны вызывают двигательные акты, а гамма-мотонейроны регулируют чувствительность мышечных рецепторов, информирующих мозг о выполнении этих движений.

          Группу альфа-мотонейронов, иннервирующих отдельную скелетную мышцу, называют ее моторным ядром. Ядра крупных скелетных мышц состоят из мотонейронов, расположенных в 2–3 сегментах спинного мозга. Отростки этих клеток выходят из спинного мозга в составе 2–3 передних корешков. Мелкие же мышцы иннервируются мотонейронами одного сегмента, волокна которого идут в составе одного переднего корешка.

          Особое место в деятельности спинного мозга занимают его промежуточные нейроны, или интернейроны. Это в основном мелкие клетки, через которые осуществляются межнейронные взаимодействия в спинном мозгу и координация деятельности мотонейронов. К промежуточным нейронам относятся и тормозные клетки Рэншоу, с помощью которых осуществляются возвратное торможение альфа-мотонейронов и реципрокное торможение центров мышц-антагонистов.

          Огромное значение в сложных процессах координации имеют межнейронные взаимодействия на уровне спинного мозга. Это может быть продемонстрировано следующими данными: из огромного количества межнейронных синапсов лишь 10% образовано волокнами, приходящими из головного мозга, и всего около 1 % – афферентными волокнами, т. е. почти 90% остальных синаптических контактов на спинальных клетках образовано волокнами, которые начинаются и кончаются в самом спинном мозгу. Это указывает на существенную роль собственной интегративной деятельности спинного мозга. Благодаря такому множеству существующих связей имеются широкие возможности комбинаций различных нервных клеток для организации любой целесообразной ответной реакции организма.

          У человека процессы координации на уровне спинного мозга в значительно большей мере подчинены регулирующим влияниям головного мозга, чем у животных. Нарушение связей спинного мозга с головным приводит к выраженному расстройству протекания спинно-мозговых рефлексов (спинальный шок). На вставочных и моторных нейронах импульсы, приходящие в спинной мозг из головного, взаимодействуют с сегментарными афферентными влияниями. Приказы вышележащих этажей нервной системы увязываются таким образом с текущим состоянием двигательного аппарата.

          Рефлексы спинного мозга можно подразделить на двигательные, осуществляемые альфа-мотонейронами передних рогов, и вегетативные, осуществляемые эфферентными клетками боковых рогов. Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышц лица). Спинной мозг осуществляет элементарные двигательные рефлексы – сгибательные и разгибательные, возникающие при раздражении рецепторов кожи или проприорецепторов мышц и сухожилий, а также посылает постоянную импульсацию к мышцам, поддерживая их напряжение – мышечный тонус.

          Мышечный тонус возникает в результате раздражения проприорецепторов мышц и сухожилий при их растяжении во время движения человека или при воздействии силы тяжести. Импульсы от проприорецепторов поступают к мотонейронам спинного мозга, а импульсы от мотонейронов направляются к мышцам, обеспечивая поддержание их тонуса. При разрушении нервных центров спинного мозга или при перерезке нервных волокон, идущих от мотонейронов к мышцам, исчезает тонус скелетных мышц. Участие спинного мозга в двигательной деятельности проявляется не только в поддержании тонуса, но и в организации элементарных двигательных актов и сложной координации деятельности различных мышц (например, согласованной деятельности мышц-антагонистов). Это возможно благодаря мощному развитию системы вставочных нейронов и их богатым взаимосвязям внутри спинного мозга.

          Специальные мотонейроны иннервируют дыхательную мускулатуру – межреберные мышцы и диафрагму и обеспечивают дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, железы внутренней секреции, пищеварительный тракт и др.) и осуществляют рефлексы, регулирующие их деятельность.

          Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации и с проведением импульсов, идущих из головного мозга в спинной. Наиболее важными восходящими путями спинного мозга являются: 1) путь в продолговатый мозг–спинно-бульбарный; 2) в мозжечок–спинно-мозжечковый, несущие импульсы ог проприорецепторов мышц, суставов и сухожилий, частично от рецепторов кожи; 3) в промежуточный мозг–спинно-таламический путь (от тактильных, болевых и терморецепторов). По различным восходящим путям передаются в головной мозг сигналы от интерорецепторов внутренних органов

          Продолговатый мозг и варолиев мост. Продолговатый мозг и варолиев мост относят к заднему мозгу. Он является частью ствола мозга. Задний мозг осуществляет сложную рефлекторную деятельность и служит для соединения спинного мозга с вышележащими отделами головного мозга. В срединной его области расположены задние отделы ретикулярной формации, оказывающие неспецифические тормозные влияния на спинной и головной мозг.

          Через продолговатый мозг проходят восходящие пути от рецепторов слуховой и вестибулярной чувствительности. Функции нейронов вестибулярных ядер продолговатого мозга разнообразны. Одна часть их реагирует на перемещение тела (например, при горизонтальных ускорениях в одну сторону они увеличивают частоту разрядов, а при ускорениях в другую сторону уменьшают их). Другая часть предназначена для связи с моторными системами. Эти вестибулярные нейроны, повышая возбудимость мотонейронов спинного мозга и нейронов двигательной зоны коры больших полушарий, позволяют регулировать двигательные акты в соответствии с вестибулярными влияниями.

          В продолговатом мозгу оканчиваются афферентные нервы, несущие информацию от рецепторов кожи и мышечных рецепторов. Здесь они переключаются на другие нейроны, образуя путь в таламус и далее в кору больших полушарий. Восходящие пути кожно-мышечной чувствительности (как и большая часть нисходящих кортико-спинальных волокон) перекрещиваются на уровне продолговатого мозга.

          В продолговатом мозгу и варолиевом мосту находится большая группа черепно-мозговых ядер (от V до XII пары), иннервирующих кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень). Совершенство этих рефлексов обусловлено наличием большого количества нейронов, образующих ядра и соответственно большого числа нервных волокон. Так, только одном нисходящем корешке тройничного нерва, проводящем болевую, температурную и тактильную чувствительность от головы, содержится во много раз больше волокон, чем в спинно-таламическом пути, содержащем волокна, идущие от болевых и температурных рецепторов остальной части тела.

          На дне IV желудочка в продолговатом мозгу находится жизненно важный дыхательн
ый центр, состоящий из центров вдоха и выдоха. Его составляют мелкие клетки, посылающие импульсы к дыхательным мышцам через мотонейроны спинного мозга. В непосредственной близости расположен сердечно-сосудистый центр. Его крупные клетки регулируют деятельность сердца и состояние сосудов. Функции этих центров взаимосвязаны. Ритмические разряды дыхательного центра изменяют частоту сердечных сокращений, вызывая дыхательную аритмию – учащение сердцебиений на вдохе и замедление их на выдохе.

          В продолговатом мозгу находится ряд рефлекторных центров, связанных с процессами пищеварения. Это группа центров моторных рефлексов (жевания, глотания, движений желудка и части кишечника), а также секреторных (слюноотделение, выделение пищеварительных соков желудка, поджелудочной железы и др.). Кроме того, здесь находятся центры некоторых защитных рефлексов: чихания, кашля, мигания, слезоотделения, рвоты.

          Продолговатый мозг играет важную роль в осуществлении двигательных актов и в регуляции тонуса скелетных мышц (см. ниже). Влияния, исходящие из вестибулярных ядер продолговатого мозга, усиливают тонус мышц-разгибателей, что важно для организации позы.

          Неспецифические отделы продолговатого мозга, наоборот, оказывают угнетающее влияние на тонус скелетных мышц, снижая его и в мышцах-разгибателях. Продолговатый мозг участвует в осуществлении рефлексов поддержания и восстановления позы тела, так называемых установочных рефлексов (см. ниже).

          Средний мозг. Через средний мозг, являющийся продолжением ствола мозга, проходят восходящие пути от спинного и продолговатого мозга к таламусу, коре больших полушарий и мозжечку.

          В состав среднего мозга входят четверохолмия, черная субстанция и красные ядра. Срединную его часть занимает ретикулярная формация (см. § 6 этой главы), нейроны которой оказывают мощное активирующее влияние на всю кору больших полушарий, а также на спинной мозг.

          Передние бугры четверохолмия представляют собой первичные зрительные центры, а задние бугры–первичные слуховые центры. Ими осуществляют также ряд реакций, являющихся компонентами ориентировочного рефлекса при появлении неожиданных раздражителей. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных–настораживания ушей. Этот рефлекс (по И. П. Павлову, рефлекс «Что такое?») необходим для подготовки организма к своевременной реакции на любое новое воздействие. Он сопровождается усилением тонуса мыщц-сгибателей (подготовка к двигательной реакции) и изменениями вегетативных функций (дыхание, сердцебиения).

          Средний мозг играет важную роль в регуляции движений глаз. Управление глазодвигательным аппаратом осуществляют расположенные в среднем мозгу ядра блокового (IV) нерва, иннервирующего верхнюю косую мышцу глаза, и глазодвигательного (III) нерва иннервирующего верхнюю, нижнюю и внутреннюю прямые мышцы нижнюю косую мышцу и мышцу, поднимающую веко, а также расположенное в заднем мозгу ядро отводящего (VI) нерва, иннервирующего наружную прямую мышцу глаза. С участием этих ядер осуществляются поворот глаза в любом направлении, аккомодация глаза, фиксация взгляда на близких предметах путем сведения зрительных осей, зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).

          У человека при ориентации во внешней среде ведущим является зрительный анализатор, поэтому особое развитие получили передние бугры четверохолмия (зрительные подкорковые центры). У животных с преобладанием слуховой ориентации (собака, летучая мышь), наоборот, в большей степени развиты задние бугры (слуховые подкорковые центры).

          Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук).

          В среднем мозгу важные функции осуществляет красное ядро. О возрастании роли этого ядра в процессе эволюции свидетельствует резкое увеличение его размеров по отношению к остальному объему среднего мозга. Красное ядро тесно связано с корой больших полушарий, ретикулярной формацией ствола, мозжечком и спинным мозгом.

          От красного ядра начинается руброспинальный путь к мотонейронам спинного мозга. С его помощью осуществляется регуляция тонуса скелетных мышц, происходит усиление тонуса мышц-сгибателей. Это имеет большое значение как при поддержании позы в состоянии покоя, так и при осуществлении движений. Импульсы, приходящие в средний мозг от рецепторов сетчатки глаза и от проприорецепторов глазодвигательного аппарата, участвуют в осуществлении глазодвигательных реакций, необходимых для ориентации в пространстве, выполнении точностных движений.

          Промежуточный мозг. В состав промежуточного мозга, который является передним концом ствола мозга, входят зрительные бугры – таламус и подбугровая область – гипоталамус.

          Таламус представляет собой важнейшую «станцию» на пути афферентных импульсов в кору больших полушарий.

          Ядра таламуса подразделяют на специфические и неспецифические.

          К специфическим относят переключательные (релейные) ядра и ассоциативные. Через переключательные ядра таламуса передаются афферентные влияния от всех рецепторов тела. Это так называемые специфические восходящие пути. Они характеризуются соматотопической организацией. Особенно большое представительство таламусе имеют эфферентные влияния, поступающие от рецепторов лица и пальцев рук. От таламических нейронов начинается путь к соответствующим воспринимающим областям коры – слуховым, зрительных и др. Ассоциативные ядра непосредственно не связаны с периферией. Они получают импульсы от переключающих ядер и обеспечивают их взаимодействие на уровне таламуса, т. е. осуществляют подкорковую интеграцию специфических влияний. Импульсы от ассоциативных ядер таламуса поступают в ассоциативные области коры больших полушарий, где участвуют в процессах высшего афферентного синтеза.

          Помимо этих ядер, в таламусе имеются неспецифические ядра, которые могут оказывать как активирующее, так и тормозящее влияние на кору (см. § 6 этой главы).

          Благодаря обширным связям таламус играет важнейшую роль в жизнедеятельности организма. Импульсы, идущие от таламуса в кору, изменяют состояние корковых нейронов и регулируют ритм корковой активности. Между корой и таламусом существуют кольцевые кортико-таламические взаимосвязи, лежащие в основе образования условных рефлексов. С непосредственным участием таламуса происходит формирование эмоций человека. Таламусу принадлежит большая роль в возникновении ощущений, в частности ощущения боли.

          Подбугровая область расположена под зрительными буграми и имеет тесные нервные и сосудистые связи с прилежащей железой внутренней секреции–гипофизом. Здесь расположены важные вегетативные нервные центры, регулирующие обмен веществ в организме, обеспечивающие поддержание постоянства температуры тела (у теплокровных) и другие вегетативные функции.

          Участвуя в выработке условных рефлексов и регулируя вегетативные реакции организма, промежуточный мозг играет очень важную роль в двигательной деятельности, особенно при формировании новых двигательных актов и выработке двигательных навыков.

          Подкорковые узлы. Подкорковыми узлами называют группу ядер серого вещества, расположенных непосредственно под полушариями большого мозга. К ним относятся парные образования: хвостатое тело и скорлупа, составляющие вместе полосатое тело (стриатум), и бледное ядро (паллидум). Подкорковые ядра получают сигналы от рецепторов тела через зрительные бугры. Эфферентные импульсы подкорковых ядер направляются к нижележащим центрам экстрапирамидной системы. Подкорковые узлы функционируют в единстве с корой больших полушарий, промежуточным мозгом и другими отделами мозга. Это обусловлено наличием кольцевых связей между ними. Через подкорковые ядра могут соединяться между собою разные отделы коры больших полушарий, что имеет большое значение при образовании условных рефлексов. Совместно с промежуточным мозгом подкорковые ядра участвуют в осуществлении сложных безусловных рефлексов: оборонительных, пищевых и др.

          Представляя собой высший отдел мозгового ствола, подкорковые узлы объединяют деятельность нижележащих образований, регулируя мышечный тонус и обеспечивая необходимое положение тела во время физической работы. Бледное ядро выполняет моторную функцию. Оно обеспечивает проявление древних автоматизмов – ритмических рефлексов. С его деятельностью связано также выполнение содружественных (например, движения туловища и рук при ходьбе), мимических и других движений.

          Полосатое тело оказывает на двигательную деятельность тормозящее, регулирующее влияние, угнетая функции бледного ядра, а также моторкой области коры больших полушарий. При заболевании полосатого тела возникают непроизвольные беспорядочные сокращения мышц (гиперкинезы). Они обусловливают некоординированные толчкообразные движения головы, рук и ног. Нарушения возникают также в чувствительной сфере – понижается болевая чувствительность, расстраиваются внимание и восприятие.

          В настоящее время выявлено значение хвостатого тела в самооценке поведения человека. При неправильных движениях или умственных операциях из хвостатого ядра в кору больших полушарий поступают импульсы, сигнализирующие об ошибке.

          Мозжечок. Это – надсегментарное образование, не имеющее непосредственной связи с исполнительными аппаратами. Мозжечок входит в состав экстрапирамидной системы. Он состоит из двух полушарий и червя, находящегося между ними. Наружные поверхности полушарий покрыты серым веществом – корой мозжечка, а скопления серого вещества в белом веществе образуют ядра мозжечка.

          Мозжечок получает импульсы от рецепторов кожи, мышц и сухожилий через спинно-мозжечковые пути и через ядра продолговатого мозга (от спинно-бульбарного пути). Из продолговатого мозга в мозжечок поступают также вестибулярные влияния, а из среднего мозга–зрительные и слуховые. Корково-мосто-мозжечковый путь связывает мозжечок с корой больших полушарий. В коре мозжечка представительство различных периферических рецепторов имеет соматотопическую организацию. Кроме того, наблюдается упорядоченность связей этих зон с соответствующими воспринимающими областями коры. Так, зрительная зона мозжечка связана со зрительной зоной коры, представительство каждой группы мышц в мозжечке – с представительством одноименных мышц в коре и т. д. Такое соответствие облегчает совместную деятельность мозжечка и коры в управлении различными функциями организма.

          Эфферентные импульсы от мозжечка поступают к красным ядрам ретикулярной формации, продолговатому мозгу, таламусу, коре и подкорковым ядрам.

          Мозжечок участвует в регуляции двигательной деятельности. Электрические раздражения поверхности мозжечка вызывают движения глаз, головы и конечностей, которые отличаются от корковых моторных эффектов тоническим характером и большой длительностью. Мозжечок регулирует изменение и перераспределение тонуса скелетных мышц, что необходимо для организации нормальной позы и двигательных актов.

          Функции мозжечка изучались в клинике при его поражениях у человека, а также у животных путем удаления (экстирпации мозжечка) (Л. Лючиани, Л. А. Орбели). В результате выпадения функций мозжечка возникают двигательные расстройства: атония– резкое падение и неправильное распределение тонуса мышц, астазия – невозможность сохранения неподвижного положения, непрерывные качательные движения, дрожание головы, туловища и конечностей, астения – повышенная утомляемость мышц, атаксия – нарушение координированных движений, походки и др.

          Мозжечок оказывает влияние также на ряд вегетативных функций, например желудочно-кишечного тракта, на уровень кровяного давления, на состав крови.

          Таким образом, в мозжечке происходит интеграция самых различных сенсорных влияний, в первую очередь проприоцептивных и вестибулярных. Мозжечок даже ранее считали центром равновесия и регуляции мышечного тонуса. Однако его функции, как оказалось, гораздо обширнее–охватывают также регуляцию деятельности вегетативных органов. Деятельность мозжечка протекает в непосредственной связи с корой больших полушарий, под ее контролем.

          § 8. Кора больших полушарий головного мозга
          Общий план организации коры. Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2–3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейронов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м2. Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.

          Корковые нейроны и их связи. Несмотря на огромное число нейронов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейроны.

          В афферентной функции коры и в процессах переключения возбуждения на соседние нейроны основная роль принадлежит звездчатым нейронам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксоны, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендриты. Звездчатые нейроны участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейронов.

          Пирамидные нейроны осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейронами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки – гигантские пирамиды Беца – находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид – их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит, через который в клетку поступают различные афферентные влияния от других нейронов, а вертикально вниз отходит эфферентный отросток – аксон.

          Многочисленность контактов (например, только на дендритах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейронов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

          Для коры больших полушарий характерно обилие межнейронных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

          Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Вытянутые по вертикали крупные пирамидные клетки с расположенными над ними и под ними нейронами образуют функциональные объединения нейронов. Все нейроны вертикальной колонки отвечают на одно и то же афферентное раздражение (от одного и того же рецептора) одинаковой реакцией и совместно формируют эфферентные ответы пирамидных нейронов.

          Распространение возбуждения в поперечном направлении–от одной вертикальной колонки к другой – ограничено процессами торможения. Возникновение активности в вертикальной колонке приводит к возбуждению спинальных мотонейронов и сокращению связанных с ними мышц. Этот путь используется, в частности, при произвольном управлении движениями конечностей.

          Первичные, вторичные и третичные поля коры. Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

          Различают три основные группы полей в коре: первичные, вторичные и третичные поля.

          Первичные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенезе, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и двигательное поле в передней центральной извилине коры) (рис. 54). Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецепторов. При разрушении первичных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены вторичные поля, или периферические зоны анализаторов, которые связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Первичные и вторичные поля имеются и у человека, и у животных.

          Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейроны. Третичные поля находятся в задней половине коры – на границах теменных, височных и затылочных ее областей и в передней половине – в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражении и с Учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

          При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысленные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

          Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

          Функции коры больших полушарии. Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

          Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психических процессов восприятия, представления, мышления. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция – образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы–см. главу XV).

          Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.

          Электрическая активность коры больших полушарии. Изменения функционального состояния коры отражаются на характере ее биопотенциалов. Регистрация электроэнцефалограммы (ЭЭГ), т. е. электрической активности коры, производится непосредственно с ее обнаженной поверхности (в опытах на животных и при операциях на человеке) или через неповрежденные покровы головы (в естественных условиях на животных и человеке). Современные электро-энцефалографы усиливают эти потенциалы в 2–3 млн. раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно.

          В ЭЭГ различают определенные диапазоны частот, называемые ритмами ЭЭГ (рис. 55). В состоянии относительного покоя чаще всего регистрируется альфа-ритм (8–12 колебаний в 1 сек.), в состоянии активного внимания – бета-ритм (выше 13 колебаний в 1 сек.), при засыпании, некоторых эмоциональных состояниях – тэта-ритм (4–7 колебаний в 1 сек.), при глубоком сне, потере сознания, наркозе – дельта-ритм (1–3 колебания в 1 сек.).

          В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе. Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ – быстрой асинхронной активности (см. рис. 55). По мере формирования двигательного навыка происходит сонастраивание активности отдельных связанных с данным движением нейронов и отключение посторонних.

          В ЭЭГ при этом возникают различные формы синхронизации (см. рис. 55, ж, з). Выполнение освоенного и автоматизированного движения может протекать при незначительной активности очень небольшого числа корковых нейронов, находящихся в ограниченных областях коры. При этом почти на всей остальной поверхности коры восстанавливается исходный ритм колебаний – альфа-ритм (см. рис. 55, з).

          В процессе спортивной тренировки происходит перестройка и совершенствование функций коры больших полушарий. С ростом спортивного мастерства увеличиваются амплитуда и регулярность проявления фоновой активности – альфа-ритма в состоянии покоя. При развитии качества быстроты (например, у баскетболистов) повышается частота волн альфа-ритма, что способствует ускорению произвольных движений.

          В процессе мышечной работы значительно усиливается по сравнению с состоянием относительного покоя взаимосвязанность (синхронность и синфазность) электрической активности различных областей коры. Это облегчает функциональные взаимодействия между различными корковыми центрами. Процесс формирования двигательного навыка сопровождается концентрацией взаимосвязанной активности в ограниченных зонах коры, наиболее важных для текущей деятельности. Между этими зонами устанавливается общий ритм активности. В такие характерные системы взаимодействующих корковых зон включаются не только первичные поля (моторные, зрительные и др.), но и вторичные (например, премоторные и др.) и особенно третичные поля: передние – программирующие лобные области и задние – зоны афферентного синтеза (нижнетеменные и др.).

          § 9. Нисходящие влияния головного мозга на двигательную деятельность
          Основные нисходящие системы головного мозга. Высшие отделы головного мозга осуществляют свои влияния на деятельность нижележащих отделов, в том числе спинного мозга, через нисходящие пути.

          У млекопитающих животных и человека контроль за рефлекторной деятельностью спинного мозга осуществляется главным образом тремя нисходящими системами: 1) кортико-спинальной, 2) кор-тико-рубро-спинальной и 8) кортико-ретикуло-спинальной. Пути этих систем идут в спинной мозг непосредственно от нейронов коры больших полушарий, а также через нейроны красного ядра среднего мозга – рубро-спинальный путь, ядра ретикулярной формации продолговатого и среднего мозга – ретикуло-спинальный путь и вестибулярные ядра продолговатого мозга – вестибуло-спинальный путь. Все эти системы функционируют в тесном взаимодействии и под контролем коры больших полушарий. Окончания волокон образуют, как правило, контакты с дендритами спинальных клеток (аксодендритные синапсы).

          Нисходящие пути головного мозга группируют обычно в 2 основные нисходящие системы–пирамидную и экстрапирамидную. Под пирамидной системой, или пирамидным трактом, понимают прямые пути от корковых пирамидных нейронов к нейронам спинного мозга (кортико-спинальный путь) и ядрам черепно-мозговых нервов ствола мозга (кортико-бульбарный путь). Экстрапирамидную систему составляют многоступенчатые связи коры больших полушарий со спинным мозгом. К ней относят подкорковые узлы, люисово тело промежуточного мозга, красные ядра и черную субстанцию среднего мозга, мозжечок, ретикулярную формацию ствола мозга и вестибулярные ядра продолговатого мозга. Важнейшими путями этой системы являются кортико-рубро-спинальная и кортико-ретикуло-спинальная системы. Группировка путей на указанные 2 системы в значительной мере условна, так как не соответствует особенностям их морфологии и функционирования.

          В настоящее время предлагают подразделять основные нисходящие пути, исходя из расположения проводящих волокон в белом веществе спинного мозга, на следующие 2 системы: 1) латеральную, волокна которой расположены в боковых (латеральных) частях спинного мозга (сюда относят кортико-спинальную и рубро-спинальную системы), и 2) медиальную, волокна которой идут во внутренней (медиальной) части белого вещества (состоящую из вестибуло-спинальной и ретикуло-спинальной систем).

          Волокна латеральной системы оканчиваются преимущественно в задних рогах спинного мозга. Они связаны со специальной группой вставочных нейронов, передающих их влияния на мотонейроны в передние рога спинного мозга. Только у обезьян и человека имеются волокна, непосредственно оканчивающиеся на мотонейронах. Латеральные системы – это самые молодые в эволюционном отношении системы, характерные лишь для млекопитающих. Больше сего они развиты у наиболее высокоорганизованных животных и Особенно у человека.

          Волокна медиальной системы, направляются к сегментарным вставочным нейронам и отчасти мотонейронам медиальной (внутренней) части передних рогов спинного мозга. Это древние системы, которые характерны для всех классов позвоночных животных.

          Кортико-спинальная система. Ей принадлежит важнейшая роль о осуществлении произвольных движений у человека. Начало этой системе дают крупные и мелкие пирамидные клетки коры больших полушарий. У человека около 30% волокон пирамидного пути начинается в передней центральной извилине, примерно 20% – в задней центральной извилине, остальные волокна–в других отделах коры и в подкорковых образованиях головного мозга. Большая часть (80%) волокон пирамидного пути перекрещивается на уровне продолговатого мозга, меньшая часть – на соответствующем сегменте спинного мозга. В результате этого корковые клетки левого полушария управляют преимущественно деятельностью мышц правой половины тела, а корковые клетки правого полушария– левой половины тела. У человека количество перекрещивающихся волокон может варьировать, по современным данным, от 0 до 100%, и многие волокна могут идти от корковых клеток к спинному мозгу без перекреста. Кроме того, в составе пирамидного пути имеются волокна с двойным перекрестом – на уровне межполушарных волокон (мозолистого тела) и в продолговатом мозгу. Эти морфологические особенности создают возможность корковой иннервации двигательного аппарата своей стороны тела. Такое дублирование управления мышцами со стороны левого и правого полушарий позволяет компенсировать двигательные функции при односторонних поражениях мозга, а также обеспечивает взаимозамещение деятельности полушарий в процессе длительной мышечной работы.

          Волокна пирамидного тракта различаются по диаметру и скорости проведения. У человека в каждом пирамидном пучке на уровне продолговатого мозга содержится около 1 млн. нервных волокон– около 1/3 мякотных и 2/3 безмякотных. В составе пирамидного тракта находятся неоднородные волокна, диаметр которых колеблется от 1 до 25 мк. Большей частью это тонкие волокна. Лишь около 2– 4% волокон имеют диаметр более 10 мк. Это волокна, характеризующиеся наибольшей скоростью проведения–до 120–140 м/сек. Они начинаются от гигантских пирамидных клеток Беца в передней Центральной извилине коры больших полушарий. Примерно такие скорости были обнаружены у человека во время нейрохирургических операций.

          Пирамидная система выполняет 3 основные функции: 1) посылает мотонейронам спинного мозга импульсы-команды к движениям (пусковые влияния); 2) изменяет проведение нервных импульсов во вставочных нейронах (влияния, регулирующие протекание спинномозговых рефлексов) и 3) осуществляет контроль за потоком афферентных сигналов в нервные центры (обеспечение обратных связей от работающих органов). Первая функция–двигательная функция кортико-спинальной системы – заключается в преимущественном возбуждении мотонейронов мышц-сгибателей. При этом импульсы, поступающие в спинной мозг, вызывают двоякий эффект – не только возбуждают мотонейроны мышц-сгибателей, но и одновременно затормаживают мотонейроны мышц-разгибателей что обеспечивает беспрепятственное сгибание в соответствующем суставе.

          Влияния пирамидной системы больше выражены по отношению к мышцам верхней части туловища и верхних конечностей, чем к мышцам нижних конечностей. Эта неравномерность воздействий отражена в самом устройстве пирамидного пути: значительно большее количество кортико-спинальных волокон проходит в шейной и грудной областях спинного мозга по сравнению с пояснично-крестцовой областью (табл. 3). Двигательные сигналы адресуются преимущественно мотонейронам дистальных мышц конечностей. Этим обеспечивается более тонкое влияние на отдельные мышцы и даже части мышц верхней конечности, особенно на мышцы фаланг пальцев руки.

          Развитие специализированного управления дистальными мышцами верхней конечности со стороны коры больших полушарий связано не только с общим совершенствованием движений человека, но главным образом с особой ролью руки – участием ее в сложнейших двигательных операциях, требующих большой точности и быстроты.

          Таблица 3

          Распределение волокон пирамидного тракта в различных сегментах спинного мозга у человека (по А.Веиль и А.Лассек, 1929; А.Лассек, Л.Дауд и А.Веиль, 1930)

          Сегменты спинного мозга
          Среднее (для 10 взрослых людей) количество (%) волокон
          Колич. волокон на 1 г мышцы

          3-й шейный
          100
          95

          4–7-й грудной
          81
          24

          3-й грудной
          55
          62

          6-й грудной
          46
          62

          12-грудной
          35
          62

          4-й поясничный
          20
          13
         

          В процессе эволюционного развития у обезьян и человека появляются прямые пути (без вставочных нейронов) от пирамидных клеток коры к мотонейронам спинного мозга. Чем больше развиты у них дифференцированные движения пальцев верхней конечности, особенно хватательные, тем большее количество корковых волокон оканчивается непосредственно на спинальных мотонейронах. Так, у макаки их число составляет около 2% всех волокон пирамидного пути, у шимпанзе–5%, а у человека–8%. Наличие в этих путях всего одного синапса (моносинаптические пути) ускоряет проведение корковых импульсов к двигательному аппарату.

          Считают, что эти пути передают влияния от мозговых механизмов обеспечивающих принятие быстрого решения при произвольных движениях человека.

          В процессе филогенетического развития произошло разделение пирамидной системы на 2 подсистемы с различным функциональном значением – «быструю» и «медленную». К «быстрой» подсистеме относятся крупные клетки моторной области коры, аксоны которых обладают высокой скоростью проведения – от 80 до 25 м/сек (средняя скорость–50 м/сек). К «медленной» подсистеме–средние и мелкие клетки моторной и других областей коры, обладающие меньшей скоростью проведения в аксонах–от 25 до 7 м/сек (средняя скорость 14 м/сек). В функциях данных нейронов имеются существенные различия. «Быстрые» пирамидные нейроны значительно быстрее отвечают на афферентное раздражение (латентный период их активации меньше), процесс возбуждения в них короче (меньше длительность пиков потенциала действия и следовых потенциалов). Импульсы, идущие по быстрым волокнам, подходят к клеткам спинного мозга значительно раньше, чем импульсы, передающиеся по медленным волокнам. В состоянии мышечного покоя крупные пирамидные нейроны с быстропроводящими аксонами имеют слабую импульсную активность, а при возникновении движения частота их разрядов резко повышается. Полагают, что «быстрые» нейроны обеспечивают срочную передачу информации от коры к спинному мозгу и контролируют фазные рефлекторные движения. Их называют нейронами движения.

          В отличие от них «медленные» нейроны характеризуются постоянной ритмической импульсацией в состоянии покоя. При движениях их активность изменяется медленно и незначительно. Считают, что эти нейроны обеспечивают регуляцию позы тела – ее организацию и приспособление к условиям внешней среды. Соответственно их называют нейронами положения.

          Функции «медленной» и «быстрой» подсистем кортико-спинального пути взаимосвязаны. Усиление активности «медленных» нейронов облегчает появление разрядов «быстрых» нейронов.

          Вторая функция пирамидной системы заключается в активации вставочных нейронов спинного мозга, передающих импульсы от чувствительных нейронов к двигательным. Передача возбуждения в многонейронных (полисинаптических) рефлекторных дугах спинного мозга при этом облегчается. Важно, что повышение возбудимости вставочных нейронов наступает под влиянием коры до начала Движения и сохраняется в течение всего периода работы мышц, облегчая ее протекание. Однако корковые влияния носят избирательный характер–проведение улучшается не во всех рефлекторных дугах, а лишь в наиболее нужных для данного момента.

          Таким образом, спинной мозг самостоятельно осуществляет присущую ему рефлекторную деятельность со всеми особенностями процессов координации (сгибательные реакции сопровождаются вневременным торможением центров мышц-антагонистов, возникают перекрестные рефлексы и т. п.). Роль коры в этом случае проявляется в регуляции этой деятельности (усилении или ослаблении отдельных рефлексов, выборе и запуске адекватных двигательных реакций).

          Третья функция пирамидного тракта связана с выключением излишних афферентных воздействий на нервные центры. Аксоны кортико-спинальной системы образуют окончания на аксонах чувствительных нервных клеток, передающих импульсы от рецепторов на периферии в спинной мозг (аксоаксональные синапсы). В месте их контакта развивается под влиянием корковых импульсов пресинаптическое торможение (сильная деполяризация чувствительных волокон), которое блокирует проведение афферентных импульсов к нервным центрам спинного и головного мозга. Главной особенностью этого торможения является то, что, подавляя все виды афферентных импульсов, оно не распространяется на импульсы, идущие от проприорецепторов мышц. В результате этого в процессе движения особенно усиливается роль сигналов от работающих мышц, анализ которых необходим для совершенного управления двигательными актами. Одновременно ослабевает импульсация от других рецепторов тела, посторонних для выполняемой работы.

          Поражения пирамидного тракта у человека (кровоизлияния, травмы и др.) приводят к невозможности выполнять произвольные движения. Однако через некоторое время эти движения могут восстановиться за счет деятельности других нисходящих систем, связывающих кору головного мозга со спинным мозгом и способных дублировать функции пирамидной системы. Частично утраченными остаются лишь тонкие движения пальцев. При разрушении патологическим очагом пирамидного тракта на одной стороне тела возможна также компенсация двигательных функций за счет гипертрофии (увеличения диаметра) пирамидных волокон на другой стороне тела.

          Кортико-рубро-спинальная система. Корковые нейроны образуют прямые связи с клетками красного ядра среднего мозга, от которых начинаются волокна рубро-спинальной системы. Окончания этих волокон находятся в латеральных частях серого вещества спинного мозга – в основании его задних рогов. У человека этот путь развит в меньшей степени, чем у других млекопитающих. Он образован преимущественно тонкими волокнами, идущими от мелких клеток красного ядра, которые связаны с мотонейронами спинного мозга лишь через специальную систему вставочных нейронов. Основная часть волокон рубро-спинальной системы заканчивается в шейных отделах спинного мозга. В состав кортико-рубро-спинального пути входят волокна, скорость проведения которых значительно выше, чем в большинстве волокон пирамидного пути, –до 105–124 м/сек (средняя скорость – около 70 м/сек). Эти волокна могут пропускать импульсы с очень высокой частотой –свыше 500 в 1 сек.

          Афферентные импульсы поступают к красным ядрам от рецепторов кожи, суставных сумок и болевых рецепторов. Красные ядра являются важным промежуточным этапом между корой и спинным мозгом, где происходит подключение регулирующих влияний от мозжечка, промежуточного мозга и подкорковых ядер. В красном ядре хорошо выражено соматотопическое представительство функций: эфферентные клетки рубро-спинальных путей активируются лишь раздражениями, поступающими от того участка тела, с двигательным аппаратом которого они связаны.

          Функции кортико-рубро-спинальной системы подобны функциям кортико-спинальной (пирамидной) системы. Это–преимущественное возбуждение мотонейронов мышц-сгибателей, повышение активности вставочных нейронов и контроль за афферентной импульсацией, идущей по восходящим путям. Однако, в отличие от пирамидной системы, здесь нет подразделения на функционально различные подсистемы.

          Деятельность кортико-рубро-спинальной системы, ограничивается лишь тоническим контролем. По рубро-спинальным волокнам в клетки спинного мозга постоянно поступает тоническая импульсация с частотой около 40–60 имп/сек. Во время движения головы или конечностей частота ее возрастает (до 100–200 имп/сек). Таким образом, функционально кортико-руброспинальный путь представляет собой единое целое с «медленной» подсистемой кортико-спинального пути, регулируя уровень активности спинальных клеток и тонус соответствующих скелетных мышц. Эта система, обобщая влияния от коры, мозжечка, промежуточного мозга и подкорковых ядер, играет большую роль в организации позо-тонических реакций организма. Формирование этих реакций важно не только в состоянии покоя, но и при выполнении произвольных движений. Еще до начала двигательного акта должна начаться подготовка к нему, в частности в виде изменения позы тела. В связи с этим наличие быстропроводящих волокон в кортико-рубро-спинальной системе может обеспечить своевременное перераспределение тонуса соответствующих мышц.

          Медиальная система (ретикуло-спинальный и вестибуло-спинальный компоненты). Медиальная, более древняя, система служит главным образом для тонических воздействий на нейроны спинного мозга. Она подразделяется на ретикуло-спинальную и вестибуло-спинальную. Обе системы контролируются корой больших полушарий. Нисходящие влияния, передаваемые ими, отчетливо различаются по своему влиянию на мотонейроны мышц сгибателей и разгибателей.

          Кортико-ретикулярные волокна идут в составе пирамидного тракта от клеток сенсомоторной и других областей коры к ядрам варолиева моста и отчасти продолговатого мозга. От этих ядер начинаются волокна ретикуло-спинального пути к вставочным и двигательным нейронам спинного мозга (в медиальной части переднего рога). Количество волокон в этой системе значительно меньше, чем в пирамидной (около 3000–4000). Они не перекрещиваются и иннервируют нейроны спинного мозга на своей стороне. Связи этих волоков с мотонейронами большей частью полисинаптические – через множество вставочных клеток. Никакой соматотопической организации этого пути не обнаружено. Основная функция кортико-ретикулярного пути – тоническое повышение возбудимости мотонейронов мышц-сгибателей, что приводит к усилению тонуса этих мышц.

          Вестибуло-спинальный компонент медиальной системы передает импульсы от вестибулярных ядер продолговатого мозга (например от ядра Дейтерса) к вставочным и двигательным нейронам переднего рога спинного мозга. Основная функция этого пути – тоническое повышение возбудимости мотонейронов мышц-разгибателей, что обеспечивает усиление тонуса этих мышц.

          Таким образом, среди нисходящих систем, осуществляющих функцию контроля активности спинного мозга, три системы обеспечивают повышение возбудимости мотонейронов мышц-сгибателей:

          кортико-спинальная, кортико-рубро-спинальная и кортико-ретикуло-спинальная, а вестибуло-спинальная система тормозит эти мотонейроны. Лишь одна часть кортико-спинальной системы обусловливает фазную двигательную деятельность. Остальные же нисходящие системы обеспечивают регуляцию тонуса мышц и позных реакций организма.

          Роль спинного и головного мозга. Несмотря на совершенство процессов координации в спинном мозгу, они находятся под постоянным контролем головного мозга, в первую очередь коры больших полушарий.

          В организме имеются специальные механизмы, обусловливающие преимущественное воздействие коры больших полушарий на общие конечные пути к мышцам–спинальные мотонейроны. Большая эффективность кортико-спинальных влияний по сравнению с сегментарными афферентными влияниями обеспечивается, во-первых, наличием прямых путей из коры к мотонейронам спинного мозга и, во-вторых, возможностью особенно быстрой их активации корковыми импульсами. Электрофизиологическими исследованиями показано, что ритмические воздействия из двигательной области коры вызывают чрезвычайно резкое нарастание суммарной амплитуды возбуждающих постсинаптических потенциалов спинальных мотонейронов. Амплитуда каждого последующего возбуждающего постсинаптического потенциала увеличивается примерно в 6 раз больше, чем при поступлении к тем же мотонейронам импульсов от проприорецепторов по афферентным путям. Таким образом, достаточно уже 2–3 импульсов, идущих от коры, чтобы деполяризация в мотонейроне достигла порогового уровня, необходимого для возникновения ответного разряда в скелетную мышцу. В результате кора больших полушарий может вызывать двигательные действия быстрее, чем периферические раздражения, и часто даже вопреки им.



[Комментировать]